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We formulate the statistical mechanical description of liquid systems for both polarizable and polar systems
in an electric field in the E ensemble, which is the pendant to the thermodynamic description in terms of the

free energy at constant potential. The contribution of the electric field to the configurational integral Q̃N�E� in

the E ensemble is given in an exact form as a factor in the integrand of Q̃N�E�. We calculate the contribution
of the electric field to the Ornstein-Zernike formula for the scattering function in the E ensemble. As an
application, we determine the field-induced shift of the critical temperature for polarizable and polar liquids
and show that the shift is upward for polarizable liquids and downward for polar liquids.
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I. INTRODUCTION

The behavior of liquid systems in an external electric field
has been the subject of experimental and theoretical interest
over many decades �1–20�. A recent example are block co-
polymer melts which are of particular interest due to the
field-induced uniform macroscopic alignment in the mi-
crophase separated state �6–13� �and references therein�,
which is of basic importance for applications using self-
assembled block copolymer structures for patterning and
templating of nanostructures �21�. A more basic question
concerns the shift of the critical temperature for low molecu-
lar weight systems in an electric field. Although this issue
has been the subject of investigations over many years
�14–20�, a microscopic explanation of the shift has not been
provided. Most of the existing theoretical work on the con-
tribution of the electric field to thermodynamic quantities is
based on a phenomenological description in the framework
of macroscopic electrodynamics. It is well known �4� that for
thermodynamics in an electric field, one should distinguish
between thermodynamic potentials at constant dielectric dis-
placement or constant charges F�T ,V ,D� and at constant

electric field or potential F̃�T ,V ,E�. However, the available
theoretical studies do not provide the tools for calculating the
thermodynamic quantities and the correlation functions �in
particular, the scattering function� in the ensemble at con-
stant electric field, which is of primary experimental rel-
evance. In this article we address this problem and establish
the statistical mechanical description of liquid systems in

electric fields at constant electric field F̃�T ,V ,E� by intro-
ducing the T-V-E ensemble following the analogy between
the T-V and T-p ensembles of statistical mechanics �22�. The
contribution of the electric field to the configurational inte-

gral Q̃N�E� in the T-V-E ensemble is given in an exact form

as a factor in the integrand of Q̃N�E�. This E ensemble pro-
vides a systematic way for the calculation of thermodynamic
quantities, correlation functions in electric fields, and among
others the calculation of the dielectric constant. We also de-
rive the contribution of the electric field to the Ornstein-
Zernike expression of the scattering function to the quadratic
order in atomic polarizabilities in both E0 and E ensembles.
Using these results, we consider the shift of the critical tem-

perature for both polarizable and polar liquids in an electric
field and give an explanation for the different sign of the
shift in these systems.

The article is organized as follows. Section II A intro-
duces the formalism of the description of simple liquids in an
electric field. Section II B generalizes the formalism to polar
systems. Section III considers the shift of the critical tem-
perature in simple and polar liquids and the comparison with
experimental results.

II. STATISTICAL MECHANICS OF SIMPLE LIQUIDS
IN AN ELECTRIC FIELD

A. Description of polarizable systems in the E ensemble

Let us first review the statistical mechanics of a system of
interacting molecules without permanent electric-dipole mo-
ments with Hamiltonian H0 in an external electric field E0.
The induced dipole moment of the ith molecule for a system
of molecules in an external electric field E0 is given by �3�

pi = �
j

�1 + �iT�ij
−1� jE0�rj� , �1�

where the summation occurs over all molecules, and the mo-
lecular polarization tensor � is defined by pi

�=�i
��E0

��ri�
with a��=�s�

��. The tensor of dipole-dipole interactions Tji
��

is given by

T���r j − ri� = − � j
�� j

� 1

rji
=

���

rji
3 − 3

rji
�rji

�

rji
5 .

It is assumed in Eq. �1� and in the following that the diagonal
elements Tii are zero. The total microscopic strength of the
electric field at the position r is given by the sum of the
external field E0�r� and the field of the induced dipoles p j

E��r� = E0
��r� − �

j

T���r − r j�pj
�. �2�

The total interaction energy of the induced dipoles is given
by �3�
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Hpol = −
1

2�
i,j

E0�ri��1 + �iT�ij
−1� jE0�rj� = −

1

2�
i

pi
�E0

��ri� .

�3�

The last line in Eq. �3� corresponds to the electric energy of
the induced dipole moments pi

� given by Eq. �1� in the ex-
ternal electric field E0

��ri�. The expansion of Hpol in Eq. �3� to
linear order in T yields

Hpol � −
1

2�
i

E0�E0 +
1

2�
i,j

E0�iT�ri − r j�� jE0 + ¯ .

�4�

The Cartesian indices are suppressed in Eq. �4�. The configu-
ration integral in the electric field is given by

QN�E0� =� d3r1¯� d3rNe−�H0−�Hpol, �5�

where H0 is the Hamiltonian which contains the repulsive
hard core and the attractive van der Waals interactions be-
tween the molecules. Equation �5� allows the statistical me-
chanical computation of the free energy F in a constant ex-
ternal electric field E0, which can be identified with the
dielectric displacement D, because both obeys the same
Maxwell equation div E0=4��ext.

The average of Hpol given by Eq. �4� over positions of
molecules results in

�Hpol	 = −
N

2
�sE0

2 +
N2

V
�s

24�� d3q
q�q�

q2 ��3��q�E0
�E0

�

� −
1

2
�sNE0

2 +
N2

V
�s

24�

3
E0

2. �6�

To calculate the integral over q in the first line of Eq. �6�, we
replaced the delta function ��3��q� by the normalized bell-
shaped function �a�q�= �1 /2�a2�3/2 exp�−�1 /2a2�q2�. The
free energy is related to QN by F=F0−kBT ln QN /VN and
does not contain the energy of the external electric field. The
expansion of QN in Eq. �5� up to linear terms in dipole-dipole
interactions and the use of Eq. �6� result in the following
expression of the free energy, which is exact to the second
order in �s:

F = F0 −
N�s

2
E0

2
1 −
8�

3
�s

N

V
+ ¯� . �7�

In thermodynamics, the free energies at constant dielectric
displacement F�T ,V ,D� and at constant electric field

F̃�T ,V ,E� are related by a Legendre transform as

F̃=F−EDV /4� with the differentials given by �4�

dF = − SdT − pdV +
V

4�
EdD ,

dF̃ = − SdT − pdV −
V

4�
DdE , �8�

where for simplicity homogeneous fields are assumed in the
above expressions.

We will now consider the question of the statistical me-
chanical calculation of the thermodynamic quantities in the
ensemble at constant potential. According to the general
principles of construction of different ensembles in statistical

mechanics �22�, the relation between F and F̃ should corre-
spond to the transition from the T-V-E0 ensemble to a T-V-E
ensemble. Following the known examples in statistical me-
chanics �22�, as for example the relation between the T-V
and T-p ensembles, we define the T-V-E ensemble by the
following expression for the configurational integral:

Q̃N�E� =� DE0�r�exp
�� d3r
EE0

4�
�

�exp
− �� d3r
E0

2

8�
�QN�E0� , �9�

where the term �E0
2 corresponds to the energy of the exter-

nal electric field. The integration over the field strength in
Eq. �9� occurs at every r, i.e., Eq. �9� is a functional integral.

Indeed, the functional integral in Eq. �9� is Gaussian, and
consequently the integration over E0�r� can be performed
exactly using the quadratic complement. We obtain

Q̃N�E� =� d� exp�− �H0�

�exp1

2
ln
8�2

�
det A−1��

�exp �

8�
� d3r� d3r�E�r�A−1�r,r��E�r��� ,

�10�

where d� denotes here integrations over positions r1 , . . . ,rN
of the particles, and the matrix A is defined by

A�r,r�� = ��r − r�� − 4�n�r��I + �Tn�r,r�
−1 � , �11�

where I→��r−r�� is the identity matrix, and n�r� is the mi-
croscopic density n�r�=�i��r−ri�. The Cartesian indices of
A are suppressed. The expansion of A−1�r ,r�� under the in-
tegral in the last line of Eq. �10� to the second order in
atomic polarizability gives rise to a factor exp�−�W2,pol�
with

W2,pol = −
1

2�
i,j

E��i
���4���	��ri − r j� − T�	�ri − r j��� j

	
E
.

�12�

The first term in Eq. �12� originates from interactions of
induced dipoles with the electric field to the second order,
while the second term is the first-order contribution
of the dipole-dipole interactions. For homogeneous field,
the term linear in �s does not depend on the positions
of the molecules and consequently does not contribute to
observables. Equation �10� is the starting point for
a calculation of the dielectric constant by summations of
subseries of perturbation expansions in powers of the
atomic polarizabilities. It is easy to see that the preaveraging
of A�r ,r�� in the exact expression �11� according to
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A�r ,r��→ �A�r ,r��	=��r−r���1−4�n��1+8��n /3�−1� re-

sults in the following expression for Q̃N�E�=exp�−�F̃�
=exp�−�F0+���E2�r�d3r /8�� with the dielectric constant
1 /�=1−4�n� / �1+8�n� /3�, which is equivalent to the
Clausius-Mossotti relation. Effects of the electric field be-
yond E2 can be also studied using Eq. �10�. The ln det term
in Eq. �10� does not depend on the electric field but on the
positions of the molecules. It has the following interpreta-
tion. Induced dipoles appear also in the absence of an exter-
nal electric field due to thermal fluctuations. Their contribu-
tion to the interaction energy between the molecules can be
absorbed into interactions between the molecules which are
independent of the external electric field and are out of in-
terest in the present work.

We now will establish the contribution of the electric field
to the static scattering function in the E0 ensemble. We start
with the Ornstein-Zernike equation �23�,

h�r1 − r2� = c�r1 − r2� + n� d3r3c�r1 − r3�h�r3 − r2� ,

which expresses the correlation function h�r1−r2�=g�r1
−r2�−1 through the direct correlation function c�r1−r2�,
where n=N /V is the average density, and the distribution
function g�r1−r2� is defined by

g�r1 − r2� =

V2� d3r3¯� d3rNe−�H0−�Hpol

� d3r1¯� d3rNe−�H0−�Hpol

. �13�

In the case of homogeneous field, we obtain from Eq. �13� to
the lowest order in dipole-dipole interactions

g�r1 − r2� � g0�r1 − r2� − �E0�T�r1 − r2��E0.

The scattering function is expressed through the Fourier
transform of the direct correlation function as �23�
S−1�q�=1−nc�q�. Using the above relations and the
Ornstein-Zernike formula, we obtain the scattering function
in the electric field E0 in the vicinity of the critical point by
taking into account the interactions of induced dipoles to
lowest order as

S−1�q� = � + cq2 + 4��n�s
2 �qE0�2

q2 + ¯ , �14�

where �=T−Tc.
To establish the contribution of the electric field to the

scattering function in the E ensemble, we start with the ex-
pression of the radial distribution function

g̃�r1,r2� =
V2

Q̃N�E�
� DE0�r�exp
�� d3r

E�r�E0�r�
4�

− �� d3r
E0

2�r�
8�

�� d3r3¯� d3rNe−�H0−�Hpol,

�15�

which is in accordance with the definition of the partition
function in Eq. �9�. Carrying out the functional integration

over E0�r� similarly to Eq. �10�, we arrive at

g̃�r1,r2� =
1

Q̃N�E�
V2� d3r3¯� d3rNe−�H0

�exp1

2
ln

8�2

�
det A−1

+
�

8�
� d3r� d3r�E�r�A−1�r,r��E�r��� , �16�

where Q̃N�E� and A�r ,r�� are defined by Eqs. �10� and �11�,
respectively. The lowest-order contribution to the direct cor-
relation function from the electric field can be obtained by
expanding A−1�r ,r�� in Eq. �16� similar to the corresponding
expansion of Eq. �10�, which results in

g̃�r1,r2� � g0�r1 − r2�exp�− �W2,pol� , �17�

where the effective binary energy W2,pol is given by Eq. �12�.
Following the same steps as in the above derivation in the E0
ensemble, we obtain the scattering function in the E en-
semble in homogeneous field as

S̃−1�q� = � + cq2 − 2��n�s
2
E2 −

�qE�2

q2 � + ¯ . �18�

The isotropic term on the right-hand side of Eq. �18� is due
to interactions of the induced dipoles with the fluctuating
electric field to order �s

2, while the anisotropic term is asso-
ciated with the dipole-dipole interactions. The comparison of
the electric-field contribution with the term �=T−Tc in Eq.
�18� yields that the critical temperature in an electric field is
shifted upward, which is in accordance with the thermody-
namic consideration for the van der Waals gas in the next
paragraph. The density fluctuations become anisotropic in an
electric field, such that the fluctuations with wave vectors q�

transverse to the field strength will be enforced, while fluc-
tuations with the wave vectors q� parallel to E remain un-
changed. The upward shift of Tc is due to the isotropic term,
which is absent in the E0 ensemble. The anisotropic charac-
ter of the density fluctuations described by Eq. �18� has the
consequence that the instability limit for fluctuations with
wave vectors transverse to E will be reached at higher tem-
peratures, which also means that an ordered state with the
interface parallel to the electric field will be preferred. Note
that the anisotropic term in Eq. �18� has the same form as the
uniaxial anisotropy in magnetic systems �24� and can change
the upper critical dimension from dc=4 to dc=3.

As a last point, in this section we will check the validity
of the relation between the compressibility and the structure
factor

1 + n� h̃�r�d3r = S̃�q = 0� = kBT
 �n

� p̃
�

T

�19�

in an electric field in the E ensemble at the critical point. The
computation of ��p̃ /�n�T using Eq. �26� in Sec. II B yields at
the critical point ��p̃ /�n�Tc

=− 4�
3 �s

2ncE
2. The latter should be

compared with S̃−1�q→0��T=Tc
which is obtained from Eq.

�18� as
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S̃−1�q → 0��T=Tc
= − 2��cnc�s

2E2 + 2��cnc�s
2t	tE	E.

The average of the right-hand side over the directions of the
unit vector t	=q	 /q gives the factor �	 /3, so that Eq. �19�
is fulfilled.

B. Description of polar systems in the E ensemble

In this section, we will generalize the statistical mechani-
cal description of polarizable liquids in an electric field de-
veloped above to polar liquid systems. As induced dipole
moments are in many cases much smaller than the permanent
ones, we neglect the polarization effects. However, a gener-
alization of the formalism taking into account both the ef-
fects of permanent and induced dipole moments is rather
straightforward. In particular, the latter is expected to be of
interest for the computation of the dielectric constant for po-
lar liquids.

The interaction energy is now given by Hel,d
=Hdd−�ipiE0�ri� with

Hdd = �
i,j

pi
�T���ri − rj�pj

� �20�

being the energy of dipole-dipole interactions. The configu-
rational integral in the E ensemble is defined similarly to Eq.
�9�, where Hpol in the expression of QN�E0� in Eq. �5� is
replaced by Hel,d. The functional integration over E0�r� re-
sults instead of Eq. �10� in the following exact expression:

Q̃N�E� =� d� exp�− �H0�

�exp1

2
ln
8�2

�
det A0

−1��� d3p1¯� d3pN

�exp�− �Hdd +
�

8�
� d3r�E�r� + 4�P�r��2� ,

�21�

where A0�r−r��=��r−r��, and P�r�=�ipi��r−ri� is the den-
sity of the dipole moment.

To enable a quantitative conclusion on the effect of
dipole-dipole interactions, we restrict ourselves here to the

calculation of Q̃N�E� to the first order in Hdd. One obtains
immediately from Eq. �21�

Q̃N�E� = Q̃p�E�� d3r1¯� d3rNe−H0

�
1 − ��
i,j

�pi
�	T���ri − rj��pj

�	 + ¯� , �22�

where Q̃p�E�= �4� sinh��� /��N with �=�pE is the partition
function of the noninteracting dipole moments in an electric
field, and �pi	= p�−1 /�+coth���� is the absolute value of the
mean dipole moment. The calculation of Eq. �22� occurs
similar to that in Eq. �6�. The contribution to the free energy
can be obtained from Eq. �7� by the replacement
�E0→ �pi	��p�E�	 and yields

F̃�E� = F0 + F̃p�E� + N
4�

3
�p�E�	2N

V
+ ¯ , �23�

where F̃p�E�=−kBT ln Q̃p�E�. The contribution of permanent
electric dipoles to the binary interaction energy in the leading
order is given by

W2,dd =
1

2�
i,j

�pi
�	T���ri − rj��pj

�	 . �24�

The contribution of W2,dd to the Ornstein-Zernike formula
can be obtained from Eq. �24� in a straightforward way and
is similar to Eq. �14�. The last term in Eq. �23� is similar to
that for the free energy in the E0 ensemble given by Eq. �7�,
and results—as we will see in Sec. III—in a downward shift
of the critical temperature.

III. SHIFT OF THE CRITICAL TEMPERATURE
IN AN ELECTRIC FIELD

Using the above results, we will consider the shift of the
critical point of a simple liquid in an electric field. The pres-
sure p=−��F /�V�T,E0

�not to be confused with the absolute
value of the permanent dipole moment� is obtained from Eq.
�7� as

p = p0 +
4�

3

N2

V2 �s
2E0

2, �25�

where the pressure p0 in the reference state can be identified
with that of the van der Waals equation. The last term in Eq.
�25� corresponds to the dipole-dipole interactions of induced
dipoles, which are repulsive according to Eq. �25�. The in-
teraction of the induced dipoles to the lowest order in
�s �=�sE0� with a homogeneous field does not depend on
volume and thus does not contribute to the pressure. For a
dielectric material in a parallel-plate capacitor, this case cor-
responds to the charged capacitor in an open circuit. For the
computation of the pressure in the E ensemble, we use the

relation p̃=−��F̃ /�V�T,E with F̃= F̃+�E2�r�d3r /8� �the
latter is the energy of the external field�, and

F̃�−kBT ln Q̃N�E� with Q̃N�E� defined by Eq. �9�, and ob-
tain to order �s

2

p̃ = p0 −
2�

3

N2

V2 �s
2E2. �26�

It follows from Eqs. �25� and �26� that the shift of the
critical point in an electric field depends on the ensemble,
i.e., if the electric circuit is open or closed in the example
with parallel-plate capacitor. The contribution of the electric
field to p in Eq. �25�, which is due to the dipole-dipole in-
teractions of induced dipoles, is positive and diminishes the
constant a of the van der Waals equation and thus results in
a decrease in the critical temperature Tc. It follows from Eq.
�26� that the contribution of the electric field to the pressure
at constant E increases the value of the constant a, so that the
shift of the critical temperature is upward in the E ensemble.
Note that Tc for the van der Waals equation is given by the
expression kBTc=8a /27b. With the shift of a derived from
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Eq. �26� ��aE= �2� /3��s
2E2�, we obtain the shift of the criti-

cal temperature as �Tc=16��c�s
2E2 /27kB. The latter coin-

cides with the expression given by Landau and Lifshitz �4�
�T= �E2

8� � �2�

��2 �T / �2p
���T if evaluated with the Clausius-Mossotti

formula and the van der Waals equation. The upward shift in
the E ensemble can be understood as follows. The macro-
scopic electric field is given by averaging Eq. �2�. The uni-
formity of E is ensured by fluctuations of the external field,
which compensate the fluctuations of the electric field of
induced dipoles

�E0 � ��
j

T�r − rj�� jE0� ,

which are due to the thermal motion of atoms. Thus, the
interactions of the induced dipoles with the external field,
�−pi�E0 with pi=�iE0 and �E0 given above, are negative
and are of the same order of magnitude as the dipole-dipole
interactions. The first term on the right-hand side of the ef-
fective binary energy in Eq. �12� originates from this term. It
follows from Eq. �12� or Eq. �18� that the total sign of the
effective binary interactions is determined by the first term.
In the E ensemble, the interactions of the induced dipoles
with the electric-field enforce spontaneous inhomogeneities
of the density, leading to an increase in the electric energy.
This is similar to the behavior in an inhomogeneous electric
field, which favors demixing �5�.

The shift of the critical temperature for polar liquids can
be obtained from Eq. �23� similar to the derivation of the Tc
shift in the E0 ensemble at the beginning of Sec. III. The
contribution to the pressure is obtained from Eq. �25� by the
replacement �E0→ �p�E�	. Thus, the permanent dipole mo-
ments result in a downward shift of the critical temperature.
As the average dipole moment in Eq. �23� equals for moder-
ate field Ep2� /3, the downward shift of the critical tempera-
ture is proportional to the square of the field strength.

The results of this paper show that the sign of the shift of
the critical temperature is determined by the permanent di-
pole moments of the atoms or molecules. Under the condi-
tion p /�E�1, the shift of Tc is downward for polar systems
and upward for unpolar but polarizable systems. This con-
clusion is in accordance with the available experimental re-
sults in Ref. �14,16,20,25�. The molecule sulfur hexafluoride
�SF6� does not possess a permanent electric-dipole moment,

so that according to our work an upward shift is expected.
Such an upward shift for SF6 was established in Ref. �20�. A
downward shift for nitrobenzene �C6H5NO2�, which pos-
sesses a permanent dipole moment of 4.23 D, was measured
in Ref. �19�—and in the earlier work �14�—and is also in
accordance with our prediction. A downward shift was also
measured in Ref. �16� for polystyrene+cyclohexane system.
Styrene monomers have a dipole moment of 0.13 D, while
the cyclohexane molecules are unpolar, so that the negative
Tc shift in this system is also in accordance with our predic-
tion. In the recent paper �25�, a downward shift of the disor-
der to order transition in polystyrene-block-polyisoprene
diblock copolymers in concentrated solutions was measured.
For fields as high as 8.5 kV/mm, a decrease in Tc by more
than 1.5 K was observed. The dipole moments of styrene and
isoprene monomers are equal to 0.13 D and 0.38 D, respec-
tively, which explains the downward shift.

The estimate of the electric energies of the isoprene
monomers due to the polarization effect and the permanent
dipole moment p in Ref. �12� yields for the ratio p /�E�1
and thus legitimate the neglection of induced electric-dipole
moments in Sec. II B.

IV. CONCLUSIONS

To conclude, the statistical mechanical description of liq-
uid systems in an electric field in the ensemble at constant
potential, which we establish first for polarizable liquids,
provides the basis for systematic calculations of thermody-
namic quantities, dielectric constants, nonlinear effects in E
beyond E2 for broad class of liquid systems such as mix-
tures, polymers, etc. The generalization of this formalism to
liquid systems with permanent dipole moments enables us to
analyze the shift of critical temperature in an electric field in
polarizable and polar liquids. Our prediction that the shift is
upward for polarizable systems and downward for polar liq-
uids is in accordance with available experimental results.
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